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CALCULATION OF THE PRESSURE DISTRIBUTION ON BODIES
OF RETVOLUTION IN THE SUBSONIC FLOW OF A GAS
PART T - AXTALLY SYMMETRICAL FLOW

By Herbert Bilharz and Ernst H3lder
I. INTRODUCTION

The present report concerns a method of computing the velocity
and pressure distributions on bodies of revolution in axially symmetrical
flow in the subsonic range.

The differentlal equation for the velocity potential ¢ of a
compresslble fluld motion is linearized in the conventional manner,
ani then put in the form AP = 0 by affine transformation. The
quantity @ represents the velocity potential of a fictitious incom-
pressible flow, for which a constant superponition oflgources by
sections- is secured by & methcd patterned after von Karman (reference 1)

vhich must comply with the boundary condition §2 = 0 at the origi-

nally specified contour. This requlrement yjeldg for the "pseudo-
stream function" ¥ a differential eguation which must be fulfilled
for as many points on the contour as scurce lensths are assumed. In
this manner, the problem of defining the sbtill unkunoim source intensi-
ties 18 reduced to the solution of an ianhomogeneous equation system.

The pressure distribution is then determined with the ald of Bernoulli's
equation and the adlabatic equation of state.

Lastly, the pressure distributions in compreesidble and incom-
pressible medium are compared on a model problem.

*ng Berechnung der Druckverteilung an Rotationskdrpern in der
Unterschallstrémung eines Gases Teil I: Achseusymrstrischs Strimung,"”
Zentrale fir wissenschaftliches Berichtswesen itber Luftfil.rtforschung
(ZW5) Berlin-Adlershof, Forschungsbericht Nr. 1169/1, Brawnschweig,
Jan. 15, 1940,
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IY. STATTONARY POTENTIAL FLOW

The discussion 1s restricted to a frictionless compressidble fluid
and 1t is assumed that the density of the medium 1s solely dependent
upon the pressure p, vhile the functional relation between pressure
and density 1s to be monotonic and continously differentiable.

The steady motion follows then, for extermal conservative forces,
the law of Lagrange analogous to the frictionless homogeneouvs incom-
pressible fluid: If the frictlonless compressible fluild moves
irrotationally at time Interval t,, then 1t does so in every subsequent
time interval t >tg. Since the state of rest 1s a special case of
the irrotational motion, the flow of & compressible fluid (nonstationary
at first) starting from rest is free from rotation and certainly remains
8c as long as the flow velocity at no voint becomes greater than the
velocity of sound of the medium. An lrrotational motion, on the other
hand, can alwsys be re?resented by a velocity potential &, so that
the veTOCity vector becomes the gradient of thils potential.

= grad ¢ (1)

with x, y, z dencting the rectangular Cartesian coordinates of

the space () in which the fluid moves, and u, v, w the components
of ¥ 1in the directions of the axes of coordinates. Equation (1),
exoressed by components, reads

Hed v v 2
EoCi et (2)
On the assumption
= f(p) (3)

the equation of motlon of the compressible mediwm can be formally
transformed into that of the incompressible medium by replacing in the

latter, % by the »ressure function

i
o) = | £ ()
Po

¥ is used throughout the test and figures of thls revort in
place of Ao, which was used in the original German report.
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- In the absence of external foroes and. in stationary flow, as invariably
assumed in the following, Bernoulli's equation reads

%3+ P(p) = const. (5)
lastly, the equation of continuity is needed:

%div (p1)=d.iv_v_+bl.10 grad p = O (6)
The flow is then defined by (1), (5), (6), and the subsequently

discussed boundary condition (21),.

Now

1 1d dp
Egrad p = b—a'& grad p Py grad P
hence by (4) in conjunction with (5)
. dp ve
dlvv_-dpvograde-o (7
Owing to
e |
gograd—e—-vogvog_
N\ A
:ﬁ292”,v2114. —-—~+uw(
x ¥

d3v  Ow AW , o8
+ VW(SZ + é-;-) + wa ey 5—-}

equation (7) becomes, with observation of irrotationality, in
coordinates,
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ou _1@) ?_‘L(_Y.%) é‘i(-?ﬁ)_.@. QL | o &F vb)_
b (} 3 + Sy 1 3 + 5, 1 3 2 v-év_+ W s 0

(8)
with

L
c = + %%)2

the local velecity of scund.

If the adiabatic equation of state
' K
R (5%; (9)

is used as basis, eguation (3) is satisfied; guartity p represents
the ~ressure at any poirnt of the medium and p, the pressure in the

(undisturbecd) flow at infinity; p and p, are the corresponding
e
densities, # = 53 is the ratio of specific heat of the gas (apprcxi-
v
mately 1.1 for air). By (5) and () the local sonic velocity at any
poiat oV the redium with the exieting velocity is

, Do | K= 1
2 = gL 4§ —eem 2 - ¢2
c e o (g - ) (10)
and
o€ 2ot |1t {1- 7)oy (10%)

Therefore, ¢ has & maximum value for + = O, that is, st the stagnation
voint, where '

4 -y
Cmax2=cco2(1+ K= &

2 ca?
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The eritical velocity also follows from (10%) when ¢ = |v} end

resolved with respect to v:

2
- - - K= 1T
Icrit2 cmina - IR Ceo (1 o cmg

for

jf:‘-"-‘-: 0.8 and k = 1.408

Ceo
for instance

cmax = 1.0633%c, and cmin = 0.96902¢ck

Since cemax 1is assumed at the contowr while elsewhere in the

medium

cmin < ¢ £ cmax

¢ may be put equal to ¢4 in first ‘a.prvroximation, by reason of

. 7.2
Smax 7 Omin 25,0887 {1 + 0.200 ~2=) £0.0973

c Cos

\—4)]&-—*

narticularly as e¢-—>c, Wwith increasing distance from the contour
as & result of the continuity ol the flow process.

ITI. LINEARIZATION

From (8) it is seen that in all cases where all velocity
components are negligibly smell compared to the sonic wvelocity
Cmins ©auation (8) leads to equation

3, 0%, O yasg (11)
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If the resulting velocity 1s no longer sufficiently small but
still below cemins it is to be expected that the quantitative relations
in the compressible medium are altered, but the character of the flow
remains similar to the incomoressible medium. It is always assumed
in the following that v¥2 < emin? in the entire rarge of flow.

Tith (8), equaticn (8) is written in the form

(“v = ( 2)5'3

Pe 2 f. 0% 0% . B
2:) -3 uv oSSyt éyéz + Wu e =0 (12)

and the values at infinity substituted in the coefficients of the
second derlvaFives of & for u, v, w and ¢, Hence there follows

by (12) a linsar nartial differential equation of the second order of
the Plletlcal tyre with constaant coefficients.

If the x ~-axis cf the coordinate system <+ points in direction
f the velociby at infinity and

r| §
0 <Nz =2 - :2<<1
o) v oo

o

denotes the ratio of undisturbed stream wvelecity to sonic velocity at
infinity, the substitution

T X8, v=0, w=203c=oc

gives an appropriate linearizatien for (12).

For the velocity potential & the eguation reads

0% L% 0% .

2 -
(-2 2 dxe 5y2 bzg

=0 (13)

It should be borne in mind that the linearization lases its
validity unear the stagnation points.
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IV. PSEUDO~STREAM FUNCTION IN (7)

Let
-1
A=+ (1-23)2
By affine transformation
At E=x, F=gAL, 2= AL
the system changes t¢ ¥. The equation
n (JC, ¥, z) =if(j;_’ 5’.: E)
is to imply that to the points P(x, y, z) and PB(%, ¥, Z) coordinated
by A equal potential values are to correspond (transplanting of
potential ¢ from space (7) in space (¥)).
Owing to
3%%
3%°

and (13), the potential ¢ therefore satisfies the Laplace equation

N a"'qs_ 3% _ A2 % % - A2 3%

3x2’ 32 N ay2’ 35 dz2

I G - o S <)

An = =0 1k
) (14)

The transformation A therefore ylelds the rule: The flow
arovnd a contour €2 in the compressible medium of a space (y) can
be computed in linearized form in an incompressible medium of a space ()
by reason of the fact that in (¥) the contour

C = AC

affinely conjugated to C 48 used ag dbasis.

% is used throvghout the text and figures of this report in
place of the symbol..L” used in the orginal German repcort.
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The following is restricted to axially symmetrical bedies and
exially symmetrical flow; the =x ~axis is the axis of rotation.

Putting

P(%, §) =B (%, ¥, 0) (15)

we got, since the local function % on each circle orthogonal to
the x ~axis has a constant value,

with
L
F o+ (32407
and after some eonversicns
- . 025 , 139 , 3%% -
Dzt =Xy z 0, (r > 0) (16)
532 TOF g2

as the differential equation for the function D,

For this vpotential T there exists a function ¥, continuous with
its first and second rartial derivabives and well defined wp to an
‘additive constant {not the Stokes stréeam function) which satisfies
the equation

@:_f-@, (\2?'.‘7:?@_?& (n
OX FAr ox

The integrability condition for (17) reads

S f .0%Y. 2 /. %%
se\"T37/ 5 8y | (18)
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or computed

- %% 37, - 0%%.
rbfe+éf+rbi2-0

therefore (18) is fulfilled because of (16). By (17) then

o~ -

x,r) 56 N
— e - ® .
¥ (%, T) = g;dr—g;dx
(X0:7¢)

By (Xg, Tg) is meant any poirt in the definition range of the function
©(%, ), that is, any roint of regularity of &(X, ¥, Z) located on
the »lane 3z 2 O,

By (15) and (17) the velccity component of ¥ in axial and radial
direction in a meridian wlane (such us 2z = 0, for instance) is

%= E’;:Q—?:Q@-: 3—6-\;
¢% 0% Y orF
(f > 0) (19)
_F: a_:ﬁ:@:_lb—m
dF OF F %

Introduciug the terms resulting from (19) into the relation

553

finally gives the nseudo-stream function E in (7):

'&-— 2—— -
_._\k .__LIJ.. - }_C\,_L_U__ il 0} (20)
a2 dFe T OF
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V. BOUNDARY CORDITION FOR ¥

Since € in (y) is streamline, the boundary condition

Q=0
dn

on C must be fulfilled for @.

The derivation of the condition resulting from (21) for
in (%) gives
00 _ o
-2 —rcos (1, £) + =—cos {n, r) =0
On Ox or
Since
6 .08 - 187
3x 0% T OF
0¢ 198 _ _ 19V
or A oF Ar ox
according to A and (17) and since
dr . dr df . , 4F -
I AR - etz (0, x
dx d4F d% ax (n, =)
we get
SAogaE 187 .
r OF d% AF O%

S

(21}

in ¢



NACA TM No. 1153 11

hence
200 &F | ¥V . (22)
or dx 0%
or
3\
1‘3_.‘6.3:'2-}- .6.31".,; N
Or dr O%

§£~: the direction of the tangent (as in the —lane 2z = 0, for

instance) %o %the contour.

In corresrondence with the flow velocity (u,, 0) at infinity,
vz ;ﬁmfz + by (17).
VI. CONSTAYT AXTAL SU+ERFOSITICO BY SLCTIONS

After introducing threes-dimensional —olar coordinates p, §, %
in (%), that is,

P length of vector
Y angle between vector and axis X
X angle of meridian plane with plane 2z = O

the velocity components are

< 00 o- o9 o
- - T e, 5 =90 23
e op ° o P oS " ()

The velocity rotential for & simple source of yield Q in the
origin is

AT e
w
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On the basis of the spherical symmetry the stream function Vi
is analogous to (19)

> s - 1 W
dp B° sin § 8§

henee

-— - 3] -
w*o‘}’:;(l+cos$)

The stream function .‘1'70 and the velocity component is now comnuted
for a source of length a and constant yield q per unit léngth.
The contribution of An element df to ¥, in point P amounts to

(sl

Al = = L (1 + cos 5) d
w

hence -\!.70 is for the total length a

na
¥,z 1+ cos & d-:-—q-a+'-"
° by k/o ( : Ly ( g = (2

the latter because

dg cosg = - dg
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With

Q = ga

as the total yield of a, (2) becomes
- 51 - 5"
R
Ly &

By (19) the axial and radial velocity components are

g . 10% . _a fhpm _apt)
C= T = - -
T3F lmar\a® drf/
>
= 1Y, Q -f3p" op’
FTUFAE T Thnaf \ox o= |

Because
AR
we get
Qé. = r. sin'§
OF P

P
O%

(25)

(26)
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hence finally by (26)

8z = < (sin 3" - sin§')
* Lwar
} (27)
EI: = - 2 — (cos §" - cos §')
LHT ar W,

Assuming consecutive source disbances of constant length a and
vield Q3 (i =1, 2, . . ., n) onthe = saxis_ (2 1), and denoting
the distances of & rarticvlar stresmline point P from the ena points
of the i-th source distance with P;' = p; and py" = pj + 1
(i 21, « o+ « o, n) we get by (29)

n n \
\ 1 \ Py - F."’+]_
=z LN fp . BT Pl ) .
'Z——.N—Ol }_].T[ L__ * a / QJ (28)
i=1 izl

This "stream function" is then sunerposed on that of the incompressible
parallel flow (approach in positive X direction)

— o2 =0
W, -9 5 =gk
1 ) >
so that the +tectal flow is
n
~_ @ Qs Py = Pj41
iE ) W T e (29)
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While the curves \p = constant in the 1ncompress1b1e mediuwm
in (¥) revresent streamllnes, the curve V = consists of especially
the Xx- axis and C, and \y = 0 must be applled for exactly as many
points of C as there are constant source distances of length a with
unknown 1nten81ty @i~ which give Qi by solution of a linear R
nonhomogeneous equation system. A somewhat different method must be
applied in the compressible medium.

VII. DETERMINATION OF SOURCE INTENSITIES

The dimensionless quantities

z; = == ya? (30)

are introduced as unknowns; 5*;k' = bi r and bi k" indicate the
- 3 ?

length of the vectors reaching from the end noints of the i-th
source distance to the k-th boundary point on C. By reason of
the uninterrunted sequence of the source distances

~

pi,l"“ = pi' + 1’ % (i, k, = ], 2,-- vy n)

The radius at the k-th contour point is indicated with Fk; the boundary
points on ¢ are to bs so assumed that re {k =1, . . .,n)is median
perpendicular of the k-th source distence.,

Proceeding from (29) the linear equation system in the unknowns 23
is set up, By it,in conjunction with, (30)

- 2 - -
- _ .2 zy Ja Pi = Pi+1l
§=of - (e B (31)
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end by (27)

n “3
W :- 23 Ta — -
§:—= - = (cos 83 - cos ¥j41)
X
izl
, (52)
n
— - B _
ggfz Ut - i ! > 2 (sin ¥; - sin ¥;5,7)
r
121 -

The boundary condition (22) for U must be fulfilled from (31).
The final result with due allowancc for (32) is

. n
r dr aF 2i T - 2 23 - <
E— A2 a%._ A2 g;.//, - (sin §; - sin §347) - Z} (cos &; - cos ¥41)= 0
i=1 751
(33)

This equation must be satisfied for n points on G, which have the
distances ¥ (k= 1, 2, « .. n) from the z wuxis: (33) is thereflore
written in the form

(34)

n

[ 2 . -r_k.-(g—l:.
ik “i a \dxfk

i=1

(=21, 2,,+ «, 0)

/dr
r, and Ka;)k refer to the originally given contour ¢ in (vy).

For the coefficients c¢ik
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dr — -
Ciy = %A(;;)k (sin ¥4 - sin ¥i+41,k)
+ %(cos?\ii.k - cos 3i+1,k) : (35)

Transforming (3L) so thet the new coefficients c*jr have the property

c*pe =1 (k=21, 2,4 « on)

(36)
we get the eqguation system
n
N, . \‘ l
N oMk ozio= g Q‘-} i (k= 1, .+ »n) (37)
/ dx/k cos § kk -
izl

with
c*ip = o3k —_
ik * cos § kk
|
where ¢iki is small, when ;i - k\ is great.

Putting

dr
ak = arc ‘tan A(—-\

dx Jie
finally gives

5. + 8. . 5. -~ %
oFsr 1 — sin i+l,k 1.k _ o si i+l,k i,k (38)
ik k
cos g cos S 2 . 2
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The formulas (36) and (38) prove themselves suitable for the numerical
calculation by iteration.

VIII. DETERVMIVATION OF VELOCITY DISTRIBUTION

By (17)

o U0D 100 . _d%_ 13V (39)
Ug T =TT, Upst TS e TT
*Tox FOF Y dr r OF
and the square of the mégpltude of velocity
2 - 1(= - LA AG
v2 = W2 + % = (YRS ATV R ) 2 () 4 (Lo)
4 r r

After computing the z3 from (37), Vs and V 7 are known by (32),
hence by (39) and (L) the velocity component.

IX. FRESSURE DISTRIBUTION

By (10%) with the aid of (5) and (9)

- Kk
" - 2 2\l k~1
e I R TR <y (LD) -
~ oo \\m/ 2 \ Voo N

- ‘e AN



NACA TM No. 1153 19

and from it by expansion in powers of AZ (terms of nower higher than
the first in A2 being disregarded):; (See reference 2.)

g;%z(.uﬁ3+£0-:@2 (w2)
£ ye? i AN Lo/
2= '

while 1032 =2 U2 end v2 from (LO) must be inserted in (L41) and (L2).
Since the line of reasoning resulting in (L2) holds only for

small A, a different method for the pressure distribution is indicated,

which holds for 2ll A with

[v|
0L\ = 2o Lmax — <1

and which gives the Mach anumber at any point of the body and from it
the local velocity of socund c.

The guantity % is introduced through the egquation
.0 2K

we = &’-+v2
I{"lpco e

by (L8) w proves itself as maximum velocity; and (10) becomes then

]
[\V]
)

Kél(l-nm (3)

with

=
1s||o




20 NACA ™ No. 1153

|
with ¢ replacing ¢, hence putting ‘x‘j‘ = 1 the square yu of the
Mech number is by (L3)

I -
A s (L)
and therefore
- 1
iwl =+ (x Do ,5' (L5)
2+(K"])l~1’,

From (L) and (9) follows

dp .
dP Z e = Coph 2dp
P
and from it by integration
- =1)1
P=cyp Lz olk-loge (L6)
KPo
Co = —g And C1 are constant.
Po
By (L6)
o - dp _ dP _ 1
°°dp-d10gp-(K-)P (L7)
On the other hand, by (5)
L2+ pz L5 (L8)
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hence, because of ie =1

1
Pz 5(1- 1_72)
Therefore by (47) in conjunction with (L3)

K~ 1

5 -(1"'.!2)3025(!{-1).1’:(5-1) ¢y p Bt

hence

k=1 1

C1p ™" =25(1-w) (L49)

with p, as the density in the stagnation point the integration
constant C3; becomes

-1 1-%
cl - Epo
hence by (Lj9) finally
-1
(-9—)K = 1-we (50)
Po -

If po 1is the pressure in the stagnation point

K L
2oLV = (1 - w2) k-
pO
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by (50), whence by (L)

therefore

K~1
I e
“': 2 |Ii‘£. K -1
K,-].L p.’
B o _ P
ecause o= = g~ We get by (51)
, N2
w2 se2yz BT}
- K-lp p./
hence
_ 1
azzert s e i( )
let
k=1 -
q ‘
flp) = =~z HL 2 E%) R |
P K—]po’ P
In this instance _ -

p -0 - K=-1
I o - 1 1+ K 1,4 -1
Qo f(,UOE) 2

R
E’CO - po - 1 1 + K- 1- K-l 1
9eo £ pey) 2

(51)

(52)

(53)
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23
that is finally
£ o
1-}/‘.' o 1 1-K
- -1 K
f? 2pm=f(1) (“Ke b '(“T“” (5L)
e -

the value from (L}) to be inserted for u.»

X, EXAMPLE

The foregoing considerations are suggestive of exvloring for
the first those bodies of revolutions the merlidian curve C of
which is an analytical function of

x in the (x, r) plane:

g_:r:‘r(x)

The example proseeds from the series of ocurves

n'll
n + 1
( )

n - =
nn X (1 J()

with

d>0,0<n <1, 0<x<1

The factor d gives

a measure for the bhiokness of the body.
If 0 <n< 1 the profiles in the (x, r) plane have a round forebody
and a pointed afterbody. For nz 1, C

z is symmetrical to x = 0.5,
in which case the forebody and the afterbody are pointed.
Generally

lr'max =ada for =

X
n+ 1
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The values chosen for the parameters are

1
d=-—216,-n=§;->ﬁ=0.8(hence,uw=o.6h);A=+(;-x2)2=%

Since ¥ = AL r = 0.6 r, the meridian curve  of the affine trans-
formed body lies within C. The meridian sections C and { are
shown in flgure 3.

The constant length a of the source distance was put at 0.1,
After computing the coefficients (38), the system (37) is solved
by iteration. Thereby it was found that the values zy for the
source Intensities converge quicker than by the von Karman method for
the initial body in incompresslble low. Both distributions of
vortex intensity for the same body of revolution in compressible and
incompressible flow for the seme flow veloclity at infinity

U = 266.km/sec™t, o = 0.64 are included in figure 3.

Figure 4 shows the velocity in terms of U; figure 5 the Mach
number for compressible flow. The Mach number follows from (L4) as
function of the velocity wi = J%; lw&j, with iyb' = 0.3368

according to figure 2 and equation (45).

Figure 6 represents the pressure distribution by (54) on the body
glong with the pressure distribution of Incompressible flow for
comparison.

The numerical values are given iIn table I.
XI. SUMMARY

The present report gives a method for determination of the
velocity and pressure distributions as they appear on bodies of
revolution in axially-symmetrical flow in the subsonic range of a
gas with adlabatic equation of state.

The differential equation for the velocity potential & of
the gas motion is firet linearized in such a manner that in the
coefficients of the second partial derivatives of & with respect
to the coordinates for the velocity components wu, v, w and the
local sonic velocity c¢ the corresponding values from infinity
U= to, 0,0; cw are inserted. There results for ¢ a linear
partial differential equation of the second order of elliptic type
wlth constant coefficients. By an affine transformation A of the
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varlables it can be converted to the Laplace form A5 = 0. The
performed linearization is valid only outsilde of a certain
“neighborhood of the stagnation points.

By the transformation A +the body of revolution with the
meridian curve C:ir = r(x) is transformed into a similar body
normal to the axis of rotation with the meridian curve §:? = F(x).
® as solution of the equation Af = 0 represents the velocity
potential of an incompressible fictitious flow in a space (¥); it
is to be noted that T 1m not a streamline. On the contrary,- the
equipotential lines ¢ Constant intersect the curve C not
orthogonally. Thus d 18 to be determined as q_regular potential
function which satlsfles in the outer range of € the equation
A = 0, at infinity hes the form & = U ¥ + reg. potential function,
and on § fulfills the condition

eV

53 Gu

ar?
ax

AR
It
O

- F

nof-

This last regqulrement results from conversion of the boundary
condition BQ/Bn =0 to ¢ Tfor the velocity potential ¢.

- As in the incompressible medium there exists for & a function
V¥ "pseudo-stream function" which satisfies the conditions

in the outer ranze of € satisfies the equation

at infinity has the form § = L Ur? + regular function, and on T
satisfies the equation: 2

Aadbdr Y _, (55)

oF I 75
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Under the assumption that the function ¢ can be analytically con-.
tinued into the interior of the body to the symmetry axis, ¢ can
be produced by a constant superposition of sovrces on the axis.

Von Kermén's method mentioned at the beginning is based on this
agsumption: the continuous source distribution on. the axis is
replaced bv a constant superpeosition in sections. The number of -
source lengths is selected according to the desired degree of !
accuracy. Corregsvonding to this number n one chooses on the
contour ¢ n varylng "control points;" most serviceably, on the
center perpendiculars of the source lengths. The sclution of the
integral equation for the continuous source distribution is reduced
to a linear inhomogeneous equation system of the nth order, the
unknown source intensities determined so that they satisfy the
equation (55) in the control points.

The solution of this equation system by ilteration converges
more rapidly for a body in compressible medium than for the same
boly in a fluld of constant volume, the reason is on the one hand
the form of the coefficients which is more symmetrical than von Kdrmén's,
on the other hand the -reater slendernmess of the auxiliary body ()
which vresults by the transformation A.

The pressure distribution is determined from Bernoulli's
equation and the equation of state. It is advantagzeous to introduce
the limiting velocity ¥ (outflow velocity of the gas into the
vacuum) . Thus it is possible to determine the Mach number at every
point of the contour and to compare pressure distributions for
various Mach numbers.

As examvle the pressure distributions for a certain body of
revolution were calculated in the compressible medium (pe, = 0.64)
and in the medivm of constant volume. The results are compiled
in table T.

Translated by J. Vanier
National Advisory Committee
for Aeronautics
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TABLE I
1 x| idLEJ- 2, compreasible |z, incompressible '—;-J- compressible LE-L incompressible Lqpﬂ’ compressible p;qpﬂ’incompresuible' +fu
o 0 «w 0 0 1.17049 1.0 r o
1| .05 | .02979} 0.16729 0.03236 0.03760 0.9805k (0.98054) .039Ck .04091 . 78249
2| .15 | .03684| .12037 .04611 06227 1.00808 1.02172 -.01601 -.04392 80734 |
3| .25 | .ous691 .06091 02909 L0157k 1.02988 1.02795 -, 0597k -.05668 82712 )
4{ .35 | 04955 02078 .01087 .02255 1.03439 1.03028 —.06964 —. 06147 .83088 i
5{ .45 04958 | —,01616 -.00874 -.02240 1.03170 1.02803 -.06430 -.05686 .82906 !
6| .55 | .Ou63T} -.04666 -.02274 -.01217 1.02517 1.02067 ~.04820 -.04178 82176
7] .65 | .04031 | -.07369 - ,03061 -.0k275 1.01342 1.01509 -.02k25 -.03042 81176
Bl .15t .03168 ) -.0985k -.03169 -.02202 1,00111 99876 -.00193 - 00247 80090
9| .Bs | .02066 | -.12134 -.02476 ~.03563 .98859 99067 102305 -.01858 . 78973
10| .95 | 00742 { -.1432k -.01017 -.00103 9873k L9TLT T .02591 -.05571 .78830
1.0 |0 - 0 0 1.17049 1.0 ]
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Figs. 5,6 NACA TM No. 1153
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Figure 5.- Curve of the Mach number along a meridian.
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Figure 6.- Pressure distribution.
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